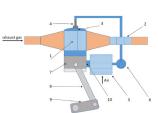
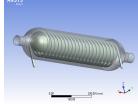




# REDUCING FUEL CONSUMPTION OF INTERNAL COMBUSTION ENGINE BY RECOVERING LOST ENERGY

#### Goal of the project


The problem of polluting emissions in the field of transport is becoming more and more stringent, so there is a general interest in finding solutions to reduce pollutant emissions and fuel consumption.


## Short description of the project

The following major objectives were proposed:

- 1. Reduction of pollutant emissions produced by ICE;
- 2. Reducing fuel consumption by recovering dissipated energy;
- 3. Increasing global thermal efficiency;
- 4. Increase the level of knowledge.

For the ICE exhaust heat recovery two system where proposed:





1. a steam engine with built-in boiler

2. a helical coil heat exchanger.

For experimental trials of the proposed system, three internal combustion engine stands have been upgraded and put into operation.

#### Implementation period

21.11.2017 - 31.12.2018

#### Budget

46.500 RON (10000 EUR)

### Main activities

During this project, the research team was focused on the following activities:

- Development of a mathematical model and simulation of a built-in instantaneous steam boiler engine.
- Verification design of Dynamic Vapor Testing Cell for verifying the developed mathematical model.
- Modernization of three internal combustion engine stands to be used for the study of energy recovery.
- Elaboration of the helical spiral boiler model for FEM analysis.
- Preliminary trials were carried out with the three internal combustion engine stands.

#### Results

As a result of the activities carried out, a paper was submitted to an ISI journal and 4 papers were presented within international conferences and the papers are classified as ISI proceedings.

- 1. Vaporization of thin film in case of vapor bubbles. New resolution approach, Virgil Stoica, Mariana Ilie.
- 2.Flash boiling steam engine, Virgil Stoica, Gavrila Trif-Tordai, Mariana Ilie, Delia Calinoiu,
- 3. Experimental bench test for boiling dynamics, Virgil Stoica, Mariana Ilie, Andrei Borborean, Cioabla Adrian, Dorin Lelea,
- 4. Test Bench for the Effects of Water Injection in an Internal Combustion Engine, Andrei Tiberiu Borborean, Virgil Stoica, Dorin Lelea,
- 5. Application of Biogas Inside and Motogenerator Case Study, Adrian Eugen Cioabla, Virgil Stoica, Francisc Popescu.

## Applicability and transferability of the results:

The results obtained to date show that the simple injection of water in the case of internal combustion engines involves a 30% reduction of nitrogen oxides emissions. This solution can be applied with low-costs on series internal combustion engines.

The project being focused on practical solutions applicable in everyday life, we expect that the on-coming results due to project implementation, to be practically applicable in industry.

#### Research team

Virgil STOICA, Project Director Gavrila TRIF-TORDAI, Member Adrian CIOABLA, Member

#### **Contact information**

Assist. Prof. Virgil STOICA, PhD
Faculty of Mechanical Engineering
Department of Mechanical Engineering, Machinery and
Transportation

Address: Blvd. Mihai Viteazu, No. 1 300222, Timisoara

Phone: (+40) 256 403 671 E-mail: virgil.stoica@upt.ro